> Please show all your work and write your answer on the answer line unless otherwise indicated by the problem. Please read the questions carefully. You have 20 minutes for the quiz.

Name:

1. (6pts) Find the length of the curve $x(t)=1+3 t^{2}, y(t)=4+2 t^{3}$ for $0 \leq t \leq 1$

$$
\int_{0}^{1} \sqrt{\dot{x}^{2}+\dot{y}^{2}} d t=\int_{0}^{1} \sqrt{6^{2} t^{2}+6^{2} t^{4}} d t=6 \int_{0}^{1} t \sqrt{1+t^{2}} d t=2(\sqrt{8}-1)
$$

2. (4pts) Below you are given four parametric equations and their cartesian equations. Write the letter of the polar equation next to the matching cartesian equation.
(a) $x=\sin (\theta), y=\cos (\theta), 0 \leq \theta \leq \pi$
(b) $x=4 \cos \theta, y=5 \sin \theta,-\pi / 2 \leq \theta \leq \pi / 2$
(c) $x=\sin ^{2} \theta, y=\cos ^{2} \theta$
(d) $x=\sec \theta, y=\tan \theta,-\pi / 2<\theta<\pi / 2$

- $(x / 4)^{2}+(y / 5)^{2}=1, x \geq 0$ \qquad
- $x+y=1,0 \leq x \leq 1$ \qquad
- $x^{2}-y^{2}=1, x \geq 1$ \qquad
- $x^{2}+y^{2}=1, x \geq 0$ \qquad
b,c,d,a

